If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-5n-1=0
a = 1; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·1·(-1)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2} $
| 10+4u=6u | | n-20=-4 | | -10+7/4p=-38 | | 5c+4=−26 | | 385.75=190+0.75x | | 5(5k-6)-8=62 | | 9+4t=2t-7 | | x2+x-6=0 | | 5c+4=−26. | | -2(8-7n)=-114 | | (3x/2+4)-10=1/2(4x+16) | | -1/3m+1=-7 | | -6y-6+1=-9y+10 | | y/9+2=8 | | 2x2-2x-4=0 | | 190x+0.75=385.75 | | 5(-8r-5)-6r=113 | | 6.01x=42.671 | | 13(x+3)-4x=3(3x+4)-14 | | 1.3+0.5x=-3.4 | | 3x(2.65+6.35)=39 | | -5y=-4y-9 | | 15x-2x=52 | | -5x+12=9x-24 | | 2/9=3/2(4/9x+2) | | 2/3(3x+9)=-2(2x+6 | | 5/2x+1/2x=5x+36/2+5/2x | | x2-9x+20=0 | | 5x=3(x-16) | | -5x+12=9x-3(4+5) | | -6(x+9)-41=5-70 | | -28q-82=q-865 |